



Lightweight and Highly-Efficient Engines Through Al and Si Alloying of Martensitic Materials\* \*Funded by VTO LightMAT Program, managed by PNNL

Dean Pierce (PI, Presenter), Govindarajan Muralidharan (Co-PI) Hsin Wang, Artem Trofimov, Allen Haynes, Oak Ridge National Laboratory Yong-Ching Chen (PI) Corey Trobaugh (Co-PI) Quancang Ma, Jian Zhou, Howard Savage, Ben Wang, Cummins Inc.

ORNL is managed by UT-Battelle, LLC

2023 DOE Vehicle Technologies Office Annual Merit Review

June 13, 2023

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

#### Timeline/Budget

- Program Start: May 2019
- Program End: October 30, 2023
- FY23: \$150k
- FY23 Industry cost share: \$350K
- 90% Complete



#### Cummins

Mahle

**CAK RIDGE** National Laboratory

#### Barriers

- Optimization of properties of piston crown steels
- Machinability/weldability/Affordability
- Scaling steel to larger sizes
- Achieving higher power density





Metallurgical Trade-off: Higher Alloy Content Increases Strength and Oxidation Resistance but Decreases Thermal Conductivity Which Raises Piston Temperature

Black arrows indicate increasing alloy content



ational Laboratory

#### Heavy Duty Freight Vehicles Will Become Top Energy **Consumer as Electrification Remains Challenged**



**CAK RIDGE** Exxon Mobil. 2018 outlook for energy: a view to 2040; 2017

Figure 1. Summary of a comparison between current and beyond Liion batteries for electrifying semi trucks DOI: 10.1021/acsenergylett.7b00432 ACS Energy Lett. 2017, 2, 1669-1673

# Increasing peak cylinder pressures and temperatures require new piston materials

- Current piston materials 4140 and Microalloyed steel not suitable above 500 °C
- New steels to increase efficiency and reduce emissions



 Increasing demand for greener fuels for ICE: green hydrogen, bio-diesel, renewable diesel, natural gas, etc.



Source: Graph by the U.S. Energy Information Administration, based on company announcements in trade press Note: We assume proposed or announced projects are operational during stated year for capacity estimates.

Model Year Pierce et al., *Prog. Mat. Sci.* 103 (2019) p. 109).

#### Commercial Steel Piston Alloy 4140 is Currently at Limits of Temperature and Strength in Heavy Duty Diesel Engines (HDDE)

- 4140 is limited to peak temperatures near 500°C.
- Major barrier to increasing engine efficiency.
- Challenge is to significantly improve properties at low cost



|         | 1200 |                                                                         |
|---------|------|-------------------------------------------------------------------------|
| (MPa    | 1000 |                                                                         |
| ength   | 800  |                                                                         |
| le Str  | 600  |                                                                         |
| Tensi   | 400  |                                                                         |
| ltimate | 200  | <ul> <li>4140 (Current Project)</li> <li>4140 Chen SAE Paper</li> </ul> |
| Ŋ       | 0    |                                                                         |
|         |      | 0 100 200 300 400 500 600                                               |

100 200 300 400 500 600 Temperature (°C)

| Composition (wt.%) |     |     |    |     |     |      |  |  |
|--------------------|-----|-----|----|-----|-----|------|--|--|
| Alloy              | Mn  | С   | Cr | Si  | Мо  | Fe   |  |  |
| 4140               | 0.9 | 0.4 | 1  | 0.3 | 0.2 | 97.6 |  |  |

### **Milestones for Task**

- FY21 Milestone 1: Bars are forged into pancakes for piston machining: Complete.
- FY21 Milestone 2: Heat treatment of pancakes: Complete.
- FY22 Milestone 1: Develop Report Detailing ORNL Work. October 31<sup>st</sup>, 2023. On Track.



#### Alloy Development to Piston Prototype and Engine Test



4

**PPROACH** 

- 1. Computationally designed, melted, processed ~35 different alloy compositions
  - 1. <u>maximize strength</u>, thermal conductivity, and oxidation resistance with limited <u>cost increase</u>.
- 2. Performed evaluations
  - Elevated temperature tensile and fatigue testing
  - Cyclic oxidation testing at 550 and 600 °C
  - Thermal properties: Diffusivity, heat capacity, thermal Expansion
  - Computational fluid dynamics analysis
- 3. Submitted joint world-wide patent application
- 4. Down selected promising alloy with remarkable properties
- 5. 1500+ Ib industrial heat successfully melted and forged
- 6. Industrial heat treat process refinement
- 7. Mechanical properties testing on scaled up alloys
- 8. Prototype pistons manufactured!
- 9. Engine testing of Full Scale Pistons of New Alloy Completed!



#### Cummins and ORNL Led Casting, Forging, and Annealing of Industrial Scale Ingot of New Alloy





## G3-5M Exhibits 85% Increase in Strength Over 4140 Steel

 28% increase over H11 (5Cr tool steel), despite significantly lower alloy content





#### G3-5M Exhibits 143% Increase in Rotating Beam Fatigue Strength over 4140 Lab at 600 °C

Comparrison of RBF Data at 600°C in Q&T Condition

- Fatigue strength at 600 °C 365 MPa
- 46% increase over H11
- Can we achieve fatigue strength in scaled up alloy?



**CCOMPLISHMENTS A** HNICAL

GRESS

ŏ

# Industrial Heat Exhibits 107% Increase in Fatigue Strength at 600 °C Over 4140 After Aging at 600 °C for 500h

• 30% increase over H11





LISH

× 0

# Novel Thermal Processing Route Produces Wide Distribution of Precipitates from 5 um to <50 nm



**CAK RIDGE** National Laboratory

## G3-5M extends the oxidation resistance to 575 or 600°C Over 4140, Modest Increases in Thermal Conductivity over H11





#### G3-5M Piston Survived Modified Peak Power Output Test With Enhanced Severity

- X15 X600 Production Engine
- 500h Modified PPO (peak power output) test to further increase severity
- Split test (4140 and G3-5M pistons)
- Surface/oxidation characterization remains to be completed



Cummins X15 X600 Production Engine at Jamestown, NY Engine Plant



### **Responses to Previous years Reviewer's comments**

- Project scored 3.47 out of 4, compared to Materials Tech. average of 3.23
- Lowest criteria was "Tech Accomplishments" 3.33
- Challenge with electrifying HD Freight transport makes project well aligned with VTO goal
- Oxidation tests of scaled up alloy deemed important.
  - We are in process of oxidation testing scaled up alloy
- Limited fatigue data, lack of baseline data
  - Showed more extensive fatigue data this year in scaled up alloy, along with 4140 and H11
- Modeling in future work?
  - Modeling was conducted on G3-5M and 4140 to illustrate temperature increase
- This reviewer believes that the key barrier to the subject technology is thermal fatigue. The project needs to include testing for thermal fatigue with samples that have sharp corners.
  - Thermal fatigue is important but challenging to replicate in lab environment.

### **Remaining Challenges and Barriers**

- Decision on suitability for next engine development
- Commercialization with steel mill

OAK RIDGE

2

### **Collaboration and Coordination**

- CRADA between Cummins and ORNL
- Melting, Processing and Forging Shops
- Partnered with Mahle to manufacture prototype pistons
- Collaborating with Thrust 4 on STEM and APT









#### **Proposed Future Research**

- Characterization of engine tested pistons
- Complete fatigue and wear testing
- Complete lab scale oxidation testing on scaled up alloy
- Identify if any small changes to alloy chemistry are warranted
- Evaluate suitability of alloy for other applications and fuels, including: injectors, dies, valves, high temperature fasteners, and for low C fuels (e.g., hydrogen, ammonia, natural gas, etc.)



#### Developed, Scaled Up, and Engine Tested a Novel Cost-Effective Piston Alloy With Improved Properties in 4 Years

- Global patent filed
- 143% fatigue strength increase over 4140 at 600°C
- New steel enables more efficient engine designs
- Apply to alternative fueled engines (hydrogen, renewable/synthetic diesel, natural gas)
- Other applications
  - Injectors, tooling, etc.
- Improved trade-off between thermal properties, strength, and oxidation resistance over state of the art steels
   CAK RIDGE National Laboratory



