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1. EXECUTIVE SUMMARY 
Successfully manufacturing automotive body structure made via the sheet metal stamping 

process depends upon simultaneous consideration of component design, tooling design, stamping 

process control, and material properties.  In many cases, introducing lightweight sheet materials 

(e.g., aluminum alloys, magnesium alloys, advanced steels) holds the potential to significantly 

reduce vehicle weight, but challenges the stamping process by introducing materials with 

inherently less ductility. Successful and repeatable applications require co-developing the 

stamping process controls with the varying material properties, including formability.  During the 

stamping process, as soon as the forming limit of the sheet is exceeded, the material splits.  

Controlling process variability to avoid these material splits will enable deployment of less 

formable, lighter, and stronger materials for stamped automotive components. 

 

A typical optimization procedure for manufacturing requires an iterative process involving 

parameter setting, execution of computational simulations, and modifying the parameters. The 

entire process demands substantial computational time, making it impractical for real-time 

feedback towards rapid corrective actions required for in-line control for running production 

processes. To overcome this challenge, artificial intelligence (AI) can be leveraged to determine 

optimal manufacturing parameters within a single manufacturing cycle time. This research 

proposes an in-line optimization framework incorporating a trained AI model to predict kidney-

shaped die forming. Preliminary results indicate that the AI framework can accurately predict 

draw-in values based on a given parameter set, a process referred to as forward prediction. 

Furthermore, the AI framework can also predict the optimal parameter set that leads to the desired 

draw-in values, referred to as backward prediction.  

    

This research has been performed in collaborations with AutoFORM and USCAR (US Council 

for Automotive Research). The members of USCAR are Ford, GM, and Stellantis. 

2. INTRODUCTION 
Sheet metal stamping is a critical manufacturing technique in the automotive industry, 

particularly for producing body structure components. The quality of the manufactured parts 

highly depends on complex interplay of factors, including sheet material properties, lubrication 

conditions, die geometry, surface wear, and press operations dynamics. Some of the common 

issues in stamping process include inconsistencies in dimensions, forming severity, and surface 

quality of stamped parts. Figure 1 shows some of the issues predicted through computational 

simulation, including potential split, wrinkles, skid marks, edge cracks, and spring back.  
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Figure 1 – Common issues in stamping predicted through simulation (software: AutoFORM). (a) 

Potential split, (b) wrinkles, (c) skid marks, (d) edge cracks, (e) spring back. 

The automotive industry’s push towards vehicle lightweighting necessitates the use of 

lightweight materials such as aluminum alloys and advanced steels and the use of precise process 

control in stamping operations. Therefore, there is a need for advanced control systems that can 

manage process variability and optimize stamping parameters in real-time to prevent material 

failures and ensure consistent part quality. 

 

Traditional optimization procedures for stamping process typically involve iterative cycles of 

parameter setting, computational simulations, and subsequent modifications, which is often time-

consuming and impractical for providing real-time feedback in a production environment. The top 

flowchart in Figure 2 illustrates this process. To address this limitation, artificial intelligence (AI) 

and machine learning (ML) techniques can offer promising solutions for rapid, in-line process 

optimization. 

 

In this project, we propose an innovative approach to developing an AI-driven stamping 

process optimization. To expedite development, the research initially focuses on a simplified 

product geometry, utilizing a "Kidney Die" design. This approach allows for the development of 

core ML algorithms without the additional complexities introduced by more intricate automotive 

geometries. After the development, the AI-driven optimization framework is applied to the door 

frame. 

 

The proposed framework incorporates a trained AI model capable of both forward prediction 

and inverse optimization, as illustrated in the middle and bottom flowcharts in Figure 2. Forward 

prediction involves accurately estimating the stamped part quality through draw-in values based 

on given parameter sets. The inverse optimization determines the optimal parameter set to achieve 

desired draw-in values. This dual-capability system aims to provide rapid, in-line optimization 
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within a single manufacturing cycle time, representing a significant advancement in stamping 

process control. 

 
Figure 2: Flowcharts of (a) a conventional method for stamping optimization, (b) AI-assisted 

prediction (forward prediction), and (c) AI-assisted optimization (inverse optimization) 

This research establishes a foundation for AI-driven process control in sheet metal stamping. 

The successful implementation of the system shows the potential to significantly improve part 

quality consistency, reduce material waste, reduce production down time and delays, and it will 

facilitate the broader adoption of lightweight materials in automotive manufacturing. 

3. STAMPING SIMULATION 
The generation of comprehensive training data is crucial for an effective AI-drive stamping 

optimization model. Although an AI-driven stamping optimization model can significantly 

reduce computation time compared to traditional simulation methods, this speed increase comes 

at the cost of extensive initial data preparation. The model requires a large, well-labeled dataset 

for training. To generate this dataset efficiently, we utilized AutoFORM [1], a commercial finite 

element analysis (FEA) tool for stamping simulations. The FEA tool allowed us to simulate a 

wide range of stamping scenarios and parameter combinations, providing the diverse data needed 

to train a robust AI model. This simulation-based approach enabled us to create a comprehensive 

dataset, while still capturing the complex physics of the stamping process. 

 



 

4 | P a g e  

 

3.1 Geometry and Simulation Setup 
For initial development and validation, a “kidney die” geometry was selected as the test case 

as shown in Figure 3. This geometry was chosen for its versatility in capturing various deformation 

modes while maintaining relative simple shape compared to production components. The nominal 

process parameters were chosen to produce formable conditions, providing a baseline for 

comparison. 

 
Figure 3. Kidney die geometry for stamping optimization (Left) top view, (Right) cross-section 

shape. 

The simulation parameters included both controllable and uncontrollable parameters. 

Controllable parameters are: Individual draw bead forces, Bead spacer thickness, Total binder 

force, and Friction coefficient. Figure 4 shows the stamping parameters we defined in AutoFORM. 

The simulation setup incorporated systematic variation of these parameters within predefined 

ranges, allowing for the coverage of potential manufacturing scenarios. AutoFORM Sigma was 

configured to generate 880 distinct simulation cases, providing sufficient data for AI model 

training. 

 
Figure 4 – Ranges for input parameters for AutoFORM’s sigma trials that were used to create 
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the training dataset. 

3.2 Simulation Results 
The AutoFORM sigma trials feature was used to generate a dataset using randomly chosen 

material properties and process parameters as dictated by the respective ranges. Subsequently, the 

simulation was run, and quality metrics were recorded for geometrically relevant locations of the 

stamped component. 880 processing scenarios were generated and simulated using the sigma trials 

feature and formed the basis of the dataset for the Kidney Die geometry. This dataset was used to 

train a neural network surrogate model. Appendix 1 – Simulation quality metrics and locations – 

shows the quality metrics and locations that data were generated for via the simulation. Table 1 

enumerates the localized quality metrics that were simulated and recorded. 

 

Table 1 – Description of key performance indicators that were simulated. 

Feature name Description 

Draw In • Material inflow at a specific location during a stamp 

• Eight locations around the blank edge were monitored for material 

inflow 

Max Failure Advanced 

Criterion 

• Value that is correlated with the potential for material splitting 

• Multiple critical zones were established to monitor potential 

splitting 

• Measurements compared major strain against the material's 

forming limit curve 

Potential Wrinkling • Indicator of amount of wrinkling that will occur 

• Areas prone to compression and wrinkling were identified based 

on engineering experience 

• Metrics were collected to quantify the severity of potential 

wrinkling 

Thinning • Material thinning as a percent change from original blank thickness 

Spring Back • Material displacement in the normal direction after stamping 

 

Each of the quality predictors are real values. Based on the design requirements for the 

component the real values can also be explicitly mapped into classes that represent a flaw or not 

for the given flaw type and location of interest. 

 

3.3 Data Preparation for AI Training 
After the data set was generated, several preprocessing steps were performed before training 

the neural network. Each of the features are scaled between 0 and 1 using min-max scaling [2]. 

Also, as discussed previously, each of the target features are real values that can be explicitly 

mapped to classes that represent flaws or not. This mapping and the corresponding classifications 
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are necessary when leveraging the surrogate model for optimization. Several distinct functions 

may be employed to perform this class membership function mapping as shown in Figure 5.  

Initially, the simplest class membership function, option 1, a simple threshold, was used.  

 

 

Figure 5 – Several possible class membership functions to transform real values from simulation 

to a flaw classification. 

 

This mapping may be done at two distinct moments in the workflow. First, the mapping may 

be done a priori where the dataset is augmented with class membership for each output feature 

respectively. In this form, the model learns the regression and classification simultaneously and 

independently. Initially, for more advanced optimization objectives, these class membership 

features were precalculated and added to the dataset before training the neural network. This 

approach will be further outlined in Section 5, specifically Section 5.2 Optimizing to Remove 

Splitting Directly. 

 

4. ARTIFICIAL INTELLIGENCE FRAMEWORK 
For this work a neural network is trained to serve as a surrogate model. The model is trained 

to predict performance metrics at locations of interest across the geometry given a set of material 

properties and processing parameters. The trained network may then be used to perform parameter 

optimization to reduce the occurrence of flaws given a suboptimal combination of material 

properties and processing parameters. The Python library Keras [3] was used for creating and 

training the neural network and for creating custom network layers for optimization. 

 

4.1 Numerical Modeling (Framework) 
Due to the target application of in-line process optimization and the inherently tabular nature 
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of the data led to the choice of a Multi-Layer Perceptron (MLP) neural network for the surrogate 

model. The default MLP network consists of an input layer, three hidden layers with 100 neurons 

each, and the output layer as shown in Figure 6. 

. 

 
Figure 6 – Default model architecture with three hidden neurons with 100 hidden neurons each. 

 

4.2  Hyperparameter settings 
 The model hyperparameters used while developing the framework were largely unchanged. 

The values are shown in Table 2. Future work will include hyperparameter optimization. 

 

Table 2 – Model hyperparameters 

Hyperparameter Value 

Train/Test Split 80%/20% 

Data Normalization Min-Max Scaling 

Loss MSE 

Optimizer ADAM 

Epochs 250 

Learning Rate 0.001 

Epsilon 1.e-5 

Hidden layer activation ‘ReLU’ 

Output layer activation ‘sigmoid’ 

 

4.3  Training and convergency (loss) with epoch 
Initially, draw in was used to evaluate the surrogate model’s performance. The reported error 
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is the MAPE. Analysis of the results showed differing levels of accuracy depending on whether a 

physical split had occurred or not. Table 3 below show the average MAPE for the test data, and 

Appendix 2 – Surrogate model training results – shows comparisons of predicted and simulated 

draw in for several representative test cases. 

 

Table 3 – Surrogate model performance for predicting draw in. 

Description MAPE 

Cases with splitting 11.1% 

Cases with no splitting 4.7% 

Full test set 6.4% 

 

In addition to the material draw in, the surrogate model was also simultaneously trained to 

predict the other quality metrics, such max failure advance criterion and potential wrinkling, at 

their respective locations. Training the model to predict all of the targets simultaneously helps the 

model generalize and not overfit to the training samples. Additionally, the model can be trained to 

perform a classification task to predict if a given quality metric at a given location represents a 

flaw or not. These predictions may be used for more complex optimization objectives. 

5. PERFORMANCE OF THE AI FRAMEWORK 
Once the surrogate model is trained, it is ready to be used for parameter optimization. Neural 

networks have several interesting properties that will facilitate optimization. First, neural networks 

are widely acknowledged to be universal function approximators. Once trained, they represent 

complex non-linear function. Additionally, they also represent differentiable functions; this is why 

they are trainable using gradient-based methods. 

So, once a model is trained, the same mechanics that were used to train the network may also 

be used for parameter optimization. However, the weights of the network that were learned during 

initial training are frozen and remain unchanged during optimization. The process is outlined in 

the flow chart in Figure 7. 

 

 
Figure 7 – Algorithm for process parameter optimization. 
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5.1  Nominal Draw-In as Optimization Objective 
We used this approach to optimize the processing parameters from the test cases. Appendix 3 

– Optimization for draw in” shows the evolution of the processing parameters and targets as well 

as simulations of three representative cases from the test set. After optimization the mean absolute 

percent error for draw in from the test cases compared to nominal draw in was 1.8 percent. 

 

The draw in values of the optimized parameter sets closely approximated the nominal draw in. 

However, further analysis showed that potential splitting, indicated by a max failure advanced 

criterion value greater than one, still occurred for some optimized parameter sets. Generally, initial 

parameter sets that resulted in significant splitting initially were likely to have unacceptable max 

failure advanced criterion values even after optimization. Figure 8 shows a representative case 

where no physical splitting occurs with the original processing parameters and optimized 

parameters remove even potential splitting; Figure 9 shows a representative case where physical 

splitting does occur with the original processing parameters, and potential splitting persists even 

after optimizing to match nominal draw-in. 

 

 
Figure 8 – a representative case where no physical splitting occurs with the original processing 

parameters and optimized parameters remove even potential splitting. 

 

 
Figure 9 – A representative case where physical splitting does occur with the original processing 

parameters, and potential splitting persists even after optimizing to match nominal draw in. 

So, while draw in is a reasonable proxy for part quality, using it as the sole target for 

optimization may not yield acceptable results. As such, we also tried other more complex 

optimization objectives. 
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5.2 Optimizing to Remove Splitting Directly 
Our next goal was to account for splitting directly during optimization. This was accomplished 

by augmenting the dataset with class membership, or flaw indicator, features. Initially, we used a 

threshold of 0.9 for the MFA criterion. Figure 10 shows the mapping of MFA to flaw classification 

for location ‘Z5’ for the training data set. 

 

 
Figure 10 – Flaw indicator feature mapping for MFA at location five. 

 

Once trained to predict these additional features, they may be used during parameter 

optimization. During optimization the target for these features if ‘0’ representing no potential 

splitting at any location. This contrasts with an optimization objective where specific MFA values 

would have to be chosen arbitrarily for each location. 

 

Using this method, two optimization objective functions were tested that would account for 

splitting directly on processing parameter sets suggested by formability engineers at our OEM 

partners. The first was simultaneously attempt to match nominal draw in while removing splitting. 

The second optimization objective was perhaps the more intuitive one: have two rounds of 

optimization and attempt to match nominal draw in the first and then remove any remaining splits. 

Simulation of optimized parameters for four representative cases for both optimization objectives 

are shown in Figure 11 and Figure 12. 

 

  
Figure 11 – Optimization objective to simultaneously match nominal draw in remove splitting 

for two new processing parameter test sets from left) GM and right) Ford. 
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Figure 12 – Optimization objective to serially match nominal draw in then remove splitting for 

the test sets from left) GM and right) Ford. 

5.3 Removing Process Parameter Constraints 
Given the unsuccessful attempts at removing potential splitting, the partner formability 

engineers were asked to see if they could manually tune the processing parameters to find a set 

that would remove splitting. They were able to find processing parameters that yielded successful 

solutions, shown in Figure 13 and Figure 14; however, those solutions included processing 

parameters outside of the original ranges specified for data set generation. During optimization 

processing parameters had been constrained to stay within the original data ranges to ensure that 

the model would not be extrapolating. 

 

 
Figure 13 – Manually optimized solution from GM. 
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Figure 14 – Manually optimized solution from Ford. 

 

To determine if the model would also be able to find a viable solution, the constraint on the 

parameter ranges was dropped and the second optimization objective was run again. This time the 

model was also able to find a set of parameters that yielded an acceptable solution. The simulations 

for the two cases with the unconstrained optimization are shown in Figure 15 and Figure 16. 

 

 
Figure 15 – Optimization objective to serially match nominal draw in then remove splitting with 

no constraints on processing parameter bounds for the test set from GM. 
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Figure 16 – Optimization objective to serially match nominal draw in then remove splitting with 

no constraints on processing parameter bounds for the test set from Ford. 

6. APPLICATION TO DOOR PANEL (GEOMETRY IN PRODUCTION) 
Upon the success of the trials on the kidney die geometry, the next step was to determine if the 

framework would be applicable on a geometry currently in production. The framework was 

applied to a door panel geometry to assess the generalizability of the method to other geometries. 

The door panel geometry was provided by GM. The geometry has fourteen controllable parameters 

– twelve secondary draw bead forces, global friction coefficient, and the constant force of the die 

– that serve as inputs, with material properties, to simulation and the surrogate model. 
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Figure 17 – Door panel geometry and secondary draw beads. 

 

Figure 17 shows the door panel geometry, and one should note that its complexity is 

significantly greater than the Kidney Die geometry. The generated dataset consisted of 254 

samples. Draw in was evaluated at nineteen locations, and max failure was calculated at eighteen 

locations. Optimization was performed in two rounds: round one aimed to match nominal draw in, 

and round two’s objective was to remove any splitting that remains. The simulation results of in 

initial and final parameter sets are shown in Appendix 3. 

 

 

7. USER-INTERFACE APP  
A GUI program, called stAmpIng, was created to facilitate training a surrogate model and 

leveraging it for optimization. The app offers many configuration options for users to enable them 

to test and evaluate the framework for different geometries and for different optimization 

configurations. The packaged program offers configurable inputs and targets for model training 

and the ability to save and load trained models. Additionally, it allows users to customize 

optimization rounds and targets. Figure 18 shows a screenshot of the stAmpIng program. 
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Figure 18 – Screenshot of the program’s project specification file and user interface. 

8. CONCLUSIONS 
In this research, we have successfully developed an innovative AI-driven optimization 

framework for sheet metal stamping processes,  and demonstrated the performance for automotive 

applications. The integration of artificial intelligence with traditional stamping simulation shows 

a viable path for real-time process optimization. By leveraging AutoFORM’s finite element 

analysis to generate training data, we established an accurate AI-based prediction model and an 

accurate AI-based optimization model. The total of 880 simulation cases for the kidney die 

geometry and the total of 254 simulation cases for the door panel provided sufficient data to train 

the AI framework capable of predicting multiple quality metrics simultaneously and also capable 

of optimizing the controllable parameters. 

 

The AI-based prediction model showed strong predictive performance, particularly for cases 

without splitting, achieving an error of only 4.7% (mean absolute percentage error) for draw-in 

distances. We have demonstrated that the model can predict multiple quality metrics 

simultaneously including draw-in, potential splitting, and wrinkling. 

 

The AI-based optimization model was also proven effective in multiple scenarios. Especially, 

when the model is allowed to suggest optimal stamping parameters without constraints, the 
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stamping parameters suggested by the model led to the most optimal stamping qualities. The two-

step optimization approach - first matching nominal draw-in values and then considering potential 

splitting – produced highly optimal stamping parameters that led to quality stamped parts for both 

the kidney die and the more complex door panel geometry. The successful scaling from a 

simplified test case (i.e., kidney die) to a production component demonstrates the high potential of 

our AI framework for real-world manufacturing applications. 

 

 We also developed “stAmpIng”, a user-friendly interface for the AI software combined with 

flexible configuration options and the ability to save and load training data for various geometries. 

This software provides easy accessibility to manufacturing engineers who may not necessarily 

have expertise in AI or programming. 
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Appendix 1 – Simulation quality metrics and locations 
 

Max Failure Adv. – Target is 1.0 (or 0.9 with a 10% safety margin) 

 

Figure 19 – Locations where max failure advanced criterion, an indicator of possible splits, waw 

evaluated. 

 

Potential Wrinkles – Target is 0.02 (0.03 if 0.02 is not achievable) 

 

Figure 20 – Locations where potential wrinkling was evaluated. 
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Product Performance (Required Thinning) – Target is -0.02 (need at least 2% thinning) 

 

Figure 21 – Locations where material thinning was simulated. 

 

Draw-in – Target is Nominal 

 

Figure 22 – Locations where draw in was calculated and the nominal draw in value for each 

location. 
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Springback (Free) was run after T30. Tables were generated at the locations below. Result 

variable is Material Displacement in the Normal direction. Target is 0mm (since the sheet before 

springback represents Nominal shape) 

 

Figure 23 – Locations where material displacement in the normal direction (spring back) was 

evaluated. 
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Appendix 2 – Surrogate model training results 

 

Cases with no splits 

 

 

 

 

 

12.98 mm 

11.11 mm 

24.22 mm 

12.89 mm 
26.62 mm 

9.48 mm 

14.95 

mm 

9.70 mm 

Error: 1.9% 

Sim #1 

4.50 mm 
5.91 mm 

23.30 mm 

14.23 mm 

26.08 mm 

7.58 mm 

7.97 mm 

3.84 mm 

Sim #6 

Error : 6.8% 
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5.11 mm 6.32 mm 

23.47 mm 

14.35 mm 

7.57 mm 26.22 mm 

8.55 mm 

4.04 mm 

Sim #7 

Error : 3.4% 
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Cases with splits 
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Appendix 3 – Optimization for draw in 
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Appendix 4 – Optimization of door panel geometry 
 

# Before After 

I 

 

 

II 
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